Improving Within-Network Classification with Local Attributes

نویسنده

  • Sofus A. Macskassy
چکیده

This paper is about using multiple types of information for classification of networked data in the transductive setting: given a network with some nodes labeled, predict the labels of the remaining nodes. One method recently developed for doing such inference is a guilt-by-association model. This method has been independently developed in two different settings. One setting assumes that the networked data has explicit links such as hyperlinks between web-pages or citations between research papers. The second setting assumes a corpus of non-relational data and creates links based on similarity measures between the instances. Both use only the known labels in the network to predict the remaining labels but use very different information sources. The thesis of of this paper is that if we were to combine the two types of links, the resulting network would carry more information than either type of link by itself. This thesis is tested on six benchmark data sets where we show that this is indeed correct. We further do a sensitivity study on how many links should be created, showing that the combined network gets most of its immediate gain using only a few extra links.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Attributes for Improved Attributes

We introduce a method for improving facial attribute predictions using other attributes. In the domain of face recognition and verification, attributes are high-level descriptions of face images. Attributes are very useful for identification as well as image search as they provide easily understandable descriptions of faces, rather than most other image descriptors (i.e. HOG, LBP, and SIFT). A ...

متن کامل

تحلیل ممیز غیرپارامتریک بهبودیافته برای دسته‌بندی تصاویر ابرطیفی با نمونه آموزشی محدود

Feature extraction performs an important role in improving hyperspectral image classification. Compared with parametric methods, nonparametric feature extraction methods have better performance when classes have no normal distribution. Besides, these methods can extract more features than what parametric feature extraction methods do. Nonparametric feature extraction methods use nonparametric s...

متن کامل

Correlation of Social Network Attributes with Individuals’ Score on Bipolar Spectrum Diagnostic Scale

Introduction: Bipolar Spectrum Disorders include a variety of mood disorders from bipolar II disorder to conditions characterized by hyperthymic mood states. It has been suggested that psychosocial factors also play an important role in bipolar disorders, in this study we have used social network analysis in order to better understand the social positions of those affected by bipolar spectrum d...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

An Iterative Improvement Approach for the Discretization of Numeric Attributes in Bayesian Classifiers

The Bayesian classifier is a simple approach to classification that produces results that are easy for people to interpret. In many cases, the Bayesian classifier is at least as accurate as much more sophisticated learning algorithms that produce results that are more difficult for people to interpret. To use numeric attributes with Bayesian classifier often requires the attribute values to be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006